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ABSTRACT 

 Most of the physical problems including sound waves in a viscous medium, waves in fluid filled viscous elastic 

tubes and magneto hydrodynamic waves in a medium with finite electrical conductivity are modeled by nonlinear partial 

differential equations. Many numerical and analytical methods are used to solve non-linear partial differential equations. 

Wavelets have generated a huge interest in different areas of applied mathematics, physics and engineering.                       

Wavelets have been applied to the numerical solution of partial differential equations. In this paper we have developed a 

wavelet Galerkin scheme for non-linear partial differential equations. The present scheme is efficient, accurate and has got 

several advantages over other numerical methods. 
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INTRODUCTION 

 Wavelet theory [4,5] was originally applied as a powerful tool for signal and image processing.                            

Wavelet analysis allows to obtain an efficient sparse representation of some function particularly good localization both in 

space and in scale of each element of a given wavelet basis. In fact, in the wavelet expansion of a function many 

coefficients are negligible and by discarding these coefficients we can obtain a sparse but accurate approximate 

representation. Moreover, using wavelet decomposition it is possible to detect singularities, irregular structure and transient 

phenomena exhibit by the analyzed function. In the last years, the good features of wavelets have generated a huge interest 

in different areas of applied mathematics, physics and engineering. Wavelets have been applied to the numerical solution 

of partial differential equations (PDEs). These kinds of methods have been studied both from the theoretical and the 

computational point of view. One of the main topics arising in the application of wavelets to the numerical algorithms for 

PDEs is the study of adaptivity solutions to PDEs often behave differently in different areas of their domain [4,5]. 

WAVELETS 

 A wavelet [16] is a wave-like oscillation with amplitude that starts out at zero, increases, and then decreases back 

to zero. It can typically be visualized as a "brief oscillation" like one might see recorded by a seismograph or heart monitor. 

Generally, wavelets are purposefully crafted to have specific properties that make them useful for signal processing. 

Wavelets can be combined, using a "shift, multiply and sum" technique called convolution, with portions of an unknown 

signal to extract information from the unknown signal. 
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TYPES OF DISCRETE WAVELET TRANSFORM 

 The following are the different types of discrete wavelet transform [9]  

• Haar Wavelet 

• Beykin 

• BNC wavelets 

• Coiflet 

• Cohen-Daubechies-Feauvean 

• Daubechies Wavelet 

• Binomial-QMF 

• Legendre Wavelet 

• Villasenor Wavelet 

• Symlet 

DAUBECHIES WAVELET 

 Daubechies wavelets [7,9], based on the work of Ingrid Daubechies, are a family of orthogonal wavelets defining 

a discrete wavelet transform and characterized by a maximal number of vanishing moments for some given support.        

With each wavelet type of this class, there is a scaling function which generates an orthogonal multiresoution analysis. 

 Daubechies wavelets are chosen to have the highest number of A of vanishing moments for given support width 

N=2A and among the 
12A−

 possible solutions one is chosen whose scaling filter has extremal phase. Daubechies wavelets 

are widely used in solving a broad range of a problems, e.g. self-similarity properties of a signal or fractal problems, signal 

discontinuities, etc. Daubechies orthogonal wavelets 2 20D D− (even index number only) are commonly used.             

The index number refers to the number N of coefficients. Each wavelet has a number of zero moments or vanishing 

moments equal to half the number of coefficients. A vanishing moment limits the wavelet’s ability to represent polynomial 

behavior or information in a signal.  

HAAR WAVELET 

 In mathematics, the Haar wavelet [9] is a sequence of rescaled "square-shaped" functions which together form a 

wavelet family or basis. Wavelet analysis is similar to Fourier Analysis in that it allows a target function over an interval to 

be represented in terms of an orthonormal function basis. The Haar sequence is now recognised as the first known wavelet 

basis and extensively used as a teaching example. 

 The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an 

orthonormal system for the space of square-integrable functions on the unit interval [0, 1]. The study of wavelets, and even 

the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also 

known as D2. The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is 
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that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for the analysis of 

signals with sudden transitions, such as monitoring of tool failure in machines. 

 The haar wavelet’s mother wavelet function ( )tψ can be described as 

( )
1 0 1 2,

1 1 2 1,

0

t

t t

otherwise

ψ

≤ ≤


= − ≤ ≤



 

 Its scaling function ( )tφ can be described as 

( )
1 0 1,

0 .

t
t

otherwise
φ

≤ <
=
  

WAVELET GALERKIN METHOD 

 The Galerkin method belongs to the family of weighted residuals methods, where the solution to a partial 

differential equation, ( ),u x t is approximated by a finite series of functions ( )k xφ  as follows:  

( ) ( ) ( )
1

,
p

k k

k

u x t a t xφ
=

= ∑
              (1) 

 where ( )k xφ are the basis or trial function, ( )ka t are coefficients to be determined (possibly time-dependent) 

that satisfy the partial differential equation, and p are the number of functions. In general the approximate solution does 

not satisfy the partial differential equation exactly, and substituting its value results in a residual, which in turn is 

minimized in some sense. 

 Consider the following boundary value problem (BVP)[12] 

( ) ( ), , 0 , , 0Lu x t f x t x t− = ∈ Ω >
            (2) 

 Substituting the trial solution (1), we get 

( ) ( ) ( ) ( )
1

, ,
p

k k

k

L a t x f x t R x tφ
=

− =∑
             (3) 

 The method of weighted residuals minimizes ( ),R x t by forcing it to be zero in the domain Ω  using weight 

functions ( )jw x  such that, for every weight function, 

( ) ( ), 0jR x t w x d x
Ω

=∫                     for 1,2,..........,j q=      

 where q is the number of weight functions to be determined, depending on the boundary conditions and number 
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of scaling functions. This discretization leads to a system of linear or non-linear ordinary differential equations where the 

values for ( )ka t can be determined. In the Galerkin method, the weight functions are chosen to be the basis functions of 

Daubecheis wavelet. 

 In wavelet Galerkin method we choose wavelet basis as weight functions. Having multiresoltuion analysis, 

,
j

V j Z∈ with scaling function ( )xφ , one can use ( ),j k xφ as the basis functions for the Galerkin method. We know that 

the set ( ) ( ){ }2
, 2 2 :

j
j

j k
x x k k Zφ φ= − ∈  forms an orthonormal basis of

j
V . Thus at approximation level j , one can 

take the orthogonal projection of u  onto
j

V in the following manner 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,

1

, , , , ,
p

j j k j k j k j k

k

u x t u x t a t x a t u x t xφ φ
=

≈ Γ = =∑
        (4) 

 and this will provide an accurate approximation to u . Furthermore, for some j ,
j

V  will capture all details of the 

original function.  

WAVELET GALERKIN SCHEME 

 PROBLEM 1: Consider the modified Burgers’equation (MBE)[13] is based upon Burgers’ equation of the form  

2 0
t x xx

u u u uυ+ − =                                            (5) 

 with initial condition 

( ) ( ),0u x f x=                                         (6) 

 and boundary conditions 

( ) ( )0, 1, 0x xu t u t= =
 

 

( ) ( )0, 1, 0xx xxu t u t= =                                       (7) 

 The equation has the strong nonlinear aspects and has been used in many practical transport problems, for 

instance, nonlinear waves in a medium with low-frequency pumping or absorption, turbulence transport, wave processes in 

thermo-elastic medium, transport and dispersion of pollutants in rivers and sediment transport, and ion reflection at                 

quasi-perpendicular shocks.  

 First we develop a weak formulation, from which we will derive the discretization. Multiplying both sides of 

Burger’s equation by a test function,
,j p

Vφ ∈  and integrating, we get 

( ) ( ) ( )
1 1 1

2

, , ,

0 0 0

0t j p x j p xx j pu x d x u u x d x u x d xφ φ υ φ+ − =∫ ∫ ∫           (8) 
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 Let the trial solution of partial differential equation (8) be 

( ) ( ) ( )
,

0

,
L

k j k
k

u x t a t xφ
=

=∑                               (9) 

 where ( ) ( )2

,
2 2

j
j

j k
x x kφ φ= −  and ( )xφ is a scaling function of Daubechies compactly supported wavelet 

with vanishing moment 2N . Now taking test function as ( ) ( )2

,
2 2

j
j

j p
x x pφ φ= − , we get a system of simultaneous 

differential equation. 
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L

k j k j p

k
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φ φ ε φ φ φ φ

υ φ φ

= = = =

=
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1
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1

, ,

0 0

L L L

p k m n j k j m j n j p
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L

k j k j p

k
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a t x x dx

φ φ φ φ

υ φ φ
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=
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( ) ( ) ( ) ( ) ( )0,0,1,0 1,1

, , , ,

0 0 0 0

L L L L

p k m n k m n p k k p

k m n k

a t a t a t a t a tυ
= = = =

= − Ω − Λ∑ ∑ ∑ ∑&          (10) 

 where, 

( ) ( ) ( ) ( )
1

0,0,1,0

, , , , , , ,

0

k m n p j k j m j n j p
x x x x dxφ φ φ φ′Ω = ∫           (11)

 ( ) ( )
1

1,1

, , ,

0

k p j k j p
x x dxφ φ′ ′Λ = ∫             (12) 

 PROBLEM 2: Consider Kortewege-de Vries-Burgers’ equation [14] is a nonlinear partial differential equation, 

which is given by 

0
t x xx xxx

u uu vu uε µ+ − + =             (13) 

 with the initial condition  

( ) ( )0, 0u x u x=                            (14) 

 and boundary conditions  

( ) ( )0, 1, 0x xu t u t= =  
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( ) ( )0, 1, 0xx xxu t u t= =             (15) 

 where , vε  and µ  are positive parameters. This equation was initially formulated by Gardner [2].                  

This model arises in many physical applications such as propagation of undular bores in shallow water waves, propagation 

of waves in elastic tube filled with a viscous fluid and weakly nonlinear plasma waves with certain dissipative effects.             

It represents long wavelength approximations where effects of the nonlinear advection term x
uu  are counterbalanced by 

the dispersion xxx
u . A number of theoretical issues related the KdVB equation have received considerable attention.               

The traveling wave solution in particular has been studied extensively. Demiray [6], Antar and Demiray [11] derived 

KdVB equation as the governing evolution equation for wave propagation in fluid-filled elastic or viscoelastic tubes in 

which the effects of dispersion, dissipation and nonlinearity were present. Eq.(13) is combination of the Burgers’ equation 

( 0µ = ) and the KdV equation ( 0v = ). Burgers’ equation [2] was first used by Burger for the study of turbulence in 

1939, whereas KdV equation [2] was first suggested by Kortewege and de Vries who used this as a nonlinear model to 

study the change in shape of long waves moving in a rectangular channel. KdVB equation has been solved by many 

authors exactly and numerically. 

 We develop a weak formulation, from which we will derive the discretization, multiplying both side of KdV 

Burgers equation by a test function, ( ),j p x Vφ ∈ and integrating we 

( ) ( ) ( ) ( )
1 1 1 1

, , , ,

0 0 0 0

0
t j p x j p xx j p xxx j p

u x dx uu x dx u x dx u x dxφ ε φ υ φ µ φ+ − + =∫ ∫ ∫ ∫                          (16)  

 Let the trial solution of partial differential equation (13) be 

( ) ( ) ( )
,

0

,
L

k j k
k

u x t a t xφ
=

=∑             (17) 

 where ( ) ( )2

,
2 2

j
j

j k
x x kφ φ= −  and ( )xφ is a scaling function of Daubechies compactly supported wavelet 

with vanishing moment 2N . Now taking test function as ( ) ( )2

,
2 2

j
j

j p
x x pφ φ= − , we get a system of simultaneous 

differential equation. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1
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0 0 00 0

1 1
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0 00 0
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( ) ( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )0,1,0 1,1 1,2

, , , ,

0 0 0 0

L L L L

p k m k m p k k p k k p

k m k k

a t a t a t a t a tε υ µ
= = = =

= − Ω − Λ − Γ∑ ∑ ∑ ∑&        (18) 

 where, 

( ) ( ) ( )
1

0,1,0

, , , , ,

0

k m p j k j m j p
x x x dxφ φ φ′Ω = ∫                        (19) 

( ) ( )
1

1,1

, , ,

0

k p j k j p
x x dxφ φ′ ′Λ = ∫             (20) 

( ) ( )
1

1,2

, , ,

0

k p j k j p
x x dxφ φ′ ′′Γ = ∫             (21) 

 PROBLEM 3: Consider the Newell-Whitehead- Segel equation [13] models the interaction of the effect of the 

diffusion term with the nonlinear effect of the reaction of the reaction term. The Newell-Whitehead- Segel equation [1] is 

written as: 

( )
2

2

2
1

u u
u u

t x

∂ ∂
= + −

∂ ∂
                                                                                         (22) 

 with the initial condition  

( ) ( )0, 0u x u x=              (23) 

 and boundary conditions  

( ) ( )0, 1, 0x xu t u t= =              (24) 

Let the trial solution of the partial differential equation (22) be 

( ) ( ) ( ),

0

,
L

k j k

k

u x t a t xφ
=

=∑                                                                                  (25) 

 Now integrating both sides of equation (22) with respect to weight function ( ),j p xφ we get a system of 

simultaneous differential equations of first order  

2

t x xu dx u dx u dx u u dxυ υ υ υ= + −∫ ∫ ∫ ∫  
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( ) ( ) ( ) ( )2

, , , ,t j p x x j p j p j pu x dx u x dx u x dx uu x dxφ φ φ φ= + −∫ ∫ ∫ ∫  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

''

, , , ,

0 0

, , , , , ,

0 0

L L

k j k j p k j k j p

k k

L L

k j k j p k m s j k j m j s j p

k k

a t x x dx a t x x dx

a t x x dx a t a t a t x x x x dx

φ φ φ φ

φ φ φ φ φ φ

•

= =

= =

=

+ −

∑ ∑∫ ∫

∑ ∑∫ ∫
 

( ) ( ) ( ) ( ) ( ) ( )2,0 0,0,0,0

, , , ,

0 0

L L

p k k p k m s k m s p p

k k

a t a t a t a t a t a t
•

= =

= Λ − Ω +∑ ∑         (26)

  

 where 

( ) ( )2,0

, , ,

l

k p j k j p

l

x x dxφ φ
−

Λ = ∫ &&             (27) 

 and    

( ) ( ) ( ) ( )0,0,0,0

, , , , , , ,

l

k m s p j k j m j s j p

l

x x x x dxφ φ φ φ
−

Ω = ∫           (28) 

CONCLUSIONS 

 In the present paper a new wavelet Galerkin scheme is developed for solving non-linear PDEs.                 

Although a Wavelet Galerkin scheme is shown using Daubecheis wavelet, the same can be extended by using Haar 

Wavelet and coiflets Wavelets. The scheme is shown for three well-known non-linear PDEs which are arising in 

engineering and science. However it can be easily extended to other types of nonlinear PDEs. In the traditional finite 

element method the approximating functions are chosen in terms of polynomial over a finite element. With the large 

number of elements, the computational cost will be higher. To overcome this difficulty, the approximating functions are 

replaced with wavelet functions which reduce the computational cost. The present scheme is effective, efficient and can 

handle large number of PDEs. 
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